Solution of the Dispersionless Hirota Equations

نویسنده

  • R. Carroll
چکیده

The dispersionless differential Fay identity is shown to be equivalent to a kernel expansion providing a universal algebraic characterization and solution of the dispersionless Hirota equations. Some calculations based on D-bar data of the action are also indicated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Kernel Formulas and Dispersionless Hirota Equations

We rederive dispersionless Hirota equations of the dispersionless Toda hierarchy from the method of kernel formula provided by Carroll and Kodama. We then apply the method to derive dispersionless Hirota equations of the extended dispersionless BKP(EdBKP) hierarchy. Moreover, we verify associativity equations (WDVV equations) in the EdBKP hierarchy from dispersionless Hirota equations and give ...

متن کامل

On Dispersionless Hirota Type Equations

Various connections between 2-D gravity and KdV, dKdV, inverse scattering, etc. are established. For KP we show how to extract from the dispersionless limit of the Fay differential identity of Takasaki-Takebe the collection of differential equations for F = log(τ ) which play the role of Hirota type equations in the dispersionless theory. 1. HIROTA EQUATIONS In [7] we showed how second derivati...

متن کامل

Dispersionless Hirota equations of two-component BKP hierarchy

The BKP hierarchy has a two-component analogue (the 2-BKP hierarchy). Dispersionless limit of this multi-component hierarchy is considered on the level of the τ -function. The so called dispersionless Hirota equations are obtained from the Hirota equations of the τ -function. These dispersionless Hirota equations turn out to be equivalent to a system of Hamilton-Jacobi equations. Other relevant...

متن کامل

Dispersionless limit of Hirota equations in some problems of complex analysis

The integrable structure, recently revealed in some classical problems of the theory of functions in one complex variable, is discussed. Given a simply connected domain in the complex plane, bounded by a simple analytic curve, we consider the conformal mapping problem, the Dirichlet boundary problem, and to the 2D inverse potential problem associated with the domain. A remarkable family of real...

متن کامل

Integrable Structures in String Field Theory

We give a simple proof that the Neumann coefficients of surface states in Witten’s SFT satisfy the Hirota equations for dispersionless KP hierarchy. In a similar way we show that the Neumann coefficients for the three string vertex in the same theory obey the Hirota equations of the dispersionless Toda Lattice hierarchy. We conjecture that the full (dispersive) Toda Lattice hierachy and, even m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995